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ABSTRACT

Autonomous space robots capable of object manipula-
tion will play a prominent role in future space missions
to achieve in-orbit assembly and debris capture. Mod-
eling the robotic manipulation of cooperative or non-
cooperative space targets requires a deeper understanding
of the interaction dynamics between multibody systems,
but, unlike terrestrial robotics, is deficient in real-world
experimental data of in-orbit multibody contact dynamics
models. Thus computer simulations remain an indispens-
able tool for spacecraft dynamics and control engineers.
The authors present a contact-inclusive simulation frame-
work to demonstrate spacecraft dynamics before, during,
and after berthing operations. They also discuss the trade-
offs of various approaches to modelling and simulation
when ignoring the contact dynamics.

1. INTRODUCTION

Autonomous rendezvous and capture/berthing is needed
in a variety of scenarios relevant to in-space assembly,
servicing, debris capture, and deorbit. Understanding the
contact dynamics in these context is essential for safely
manipulating targets (cooperative or uncooperative). The
difficulty of reproducing the on-orbit environment with
ground-based experiments makes it particularly impor-
tant to numerically simulate such proximity operations
in a realistic and accurate way at a lower cost. Specif-
ically, simulating autonomous rendezvous and berthing
requires a framework capable of developing and investi-
gating optimal control strategies while replicating contact
dynamics with high fidelity. Although several researchers
have addressed contact problems during capture, contact
dynamics is also relevant in examining post-capture be-
haviours [1]. To demonstrate such capabilities of the pro-
posed framework, this study examines the scenario of a
target body being approached by a chaser, which com-
prises an actuated base-spacecraft with a four-link ma-
nipulator. Overall, the simulation presented in this pa-
per shows result from three phases of the berthing ma-
neuver: pre-capture optimal trajectory execution to a pre-
determine point on the target; capture-related contact dy-

namics based on collision detection; and post-berthing
behaviours.

The first trajectory optimization problem consists of find-
ing a path in the joint space for the manipulator so that
the end-effector (EE) reaches the designated position for
the coupling operation by minimizing a prescribed ob-
jective function while respecting path bounds and con-
straints on joint velocity and acceleration. In regards to
the second phase of simulating contact during coupling
operation, we formulate collision detection as a convex
optimization problem [2] which avoids using computa-
tionally expensive mesh-based representations of the con-
tact surfaces [3]. Here, we employ an elasto-plastic force
model previously used to study space robots [4].In the
third phase of the simulation, constraint forces resulting
from the interaction between the target and the final link
of the robot arm are solved via the use of Lagrange multi-
pliers (LMs) [5].The Lagrange multiplier method allows
for the construction of a detachable joint between bod-
ies that make and break contact; it offers a more realistic
physical model to treat bodies as separable entities that
does not require reformulating system dynamics. A final
focus of the paper is the investigation of the behavior of
such a detachable joint and its effects on the coupled dy-
namics of the integrated spacecraft and target during the
berthing maneuver. Previous works using Lagrange mul-
tipliers derive constraint equations of multibody systems
using only external loads [6]; in this work, we add the
contact forces generated by collision detection into this
computation.

The paper is organized as follows: Section 2 describes
the system under consideration and the maneuver rele-
vant details. In Section 3 the problem of optimal trajec-
tory generation is posed, and the algorithm for solving
it is described. Section 4 deals with contact dynamics,
where the collision detection algorithm and collision res-
olution formula are described. Section 5 explains the La-
grange multipliers method applied to model the detach-
able joint. It also differentiates between two approaches
considering first the accuracy of motion behaviours at the
joint, and the computational effort of simulations. Sec-
tion 6 presents relevant results and the main conclusions
are summarised in Section 7, .



Figure 1: Planar view of the spacecraft and target.

2. SYSTEM MODELLING

Figure 1 shows a planar schematic of a multibody chaser
vehicle and a single-body target T . The chaser comprises
a base-spacecraft vehicle A and a four-link manipulator
whose links are labelled B,C, F , and G, from base link
to tip link. The following assumptions are made in the
kinematic and dynamic modeling of the system:

• All bodies are rigid cuboids, homogeneous, and
isotropic; their centers of mass coincide with their
respective geometric centers.

• Although the base-spacecraft and the target are
modeled with 6 Degrees-of-Freedoms (DoFs), the
berthing operation is performed entirely with planar
motion.

• dimensions, position, and orientation of the target
are known

The base-spacecraft is equipped with a three-axis reac-
tion wheel to change its orientation, which is defined by
Euler angles condensed in vector θa = [θ1, θ2, θ3]; obvi-
ously, there is no need for nozzle jets to move the base-
spacecraft center of mass (CoM). The manipulator has
four joints defined by as many angles collected in the
vector θm = [θ4, θ5, θ6, θ7], each joint provides one ro-
tational DoF and is actuated by one motor. The target
T is free to translate and rotate in space but lacks on-
board actuators, thus it can be moved only by an external
interaction. Identical to prior work [7], the target is as-
sumed to be within the grasping range of the manipulator.
The multibody dynamics models derived in this study are
based on Kane’s method [8, 9]. q denotes the generalized
coordinates vector of the chaser, containing the position
and attitude of the base-spacecraft xa and the joint angles
of the manipulator θm, the resulting equations of motion
(EoMs) can be succinctly presented as

M(q)q̈+ c(q, q̇) = τ (1)

where M(q) is the inertia matrix of the system, c(q, q̇)
is the nonlinear velocity-dependent vector and τ is the
vector of generalized forces and torques. Eq. (1) can be
partitioned in the following form:[
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T
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T

]
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where Ma ∈ R6×6 is the base-spacecraft inertia matrix;
Mm ∈ Rn×n is the manipulator inertia matrix; Mam ∈
R6×n is the coupled inertia matrix; ẍa ∈ R6 is the linear
and angular accelerations vector of the base-spacecraft,
i.e., second derivative of xa; θ̈m ∈ Rn is the vector
of angular accelerations of the manipulator, i.e., second
derivative of θm; ca ∈ R6 and cm ∈ Rn are the non-
linear velocity-dependent vectors for the base-spacecraft
and manipulator, respectively; fa ∈ R6 and fe ∈ R6 are
the vectors of external forces and moments on the base-
spacecraft CoM and the EE of the manipulator, respec-
tively; while τm ∈ Rn is the vector of joint torques of
the manipulator; Ja ∈ R6×6 and Jm ∈ R6×n are the
Jacobian matrices with respect to the base-spacecraft and
the manipulator, respectively. In this paper, n = 4 since
the manipulator has four links. Starting from a folded
configuration, the manipulator approaches the stationary
target with a trajectory that minimizes the angular accel-
erations. The EE arrives with zero velocity at a point on
the target designated for coupling. Then, a hinge con-
straint is established, unifying spacecraft and target into a
new multibody system. Interactions with the target affect
the position of the manipulator and, because of coupled
dynamics, also the attitude of the base-spacecraft, which
can be re-stabilized through the reaction wheel. Since pri-
ority must be given to the execution of the coupling oper-
ation, which requires precise alignment between bodies,
a “computed torque controller” [10] was chosen to track
the trajectory, allowing full control of the spacecraft actu-
ation. After the coupling operation is completed, the first
part of the berthing maneuver is performed, dragging the
target close to the base-spacecraft with constant torque
values of joint motors.



3. OPTIMAL TRAJECTORY GENERATION

Convex programming techniques are widely used in
aerospace guidance and control applications [11]. Specif-
ically in the context of berthing maneuvers, pre-capture
trajectories were presented where the base-spacecraft’s
attitude is controlled so that it maintains the same rota-
tional rate relative to a tumbling target [12]. In this paper,
a trajectory optimization algorithm minimizes the sum of
base-spacecraft and joints squared accelerations over the
examined time horizon; since the base-spacecraft CoM is
fixed, only angular coordinates are considered.

minimize
θ̈4,i, θ̈5,i, θ̈6,i, θ̈7,i

N∑
i=1

7∑
j=4

θ̈2j,i +

N∑
i=1

3∑
j=1

α2
j,i

subject to −L1 ≤θi ≤ L1,

−L2 ≤θ̇i ≤ L2,

−Amax ≤θ̈m,i ≤ Amax,

−αmax ≤αi ≤ αmax,

θ(0) = θ0,

θ(T ) = θT ,

θ̇(0) = θ̇0,

θ̇(T ) = θ̇T ,

θ̈a,i = f(αi),

0 ≤t ≤ T

(3)

where the joint accelerations θ̈j,i, j = (4, 5, 6, 7), con-
densed into the vector θ̈m,i, are the control variables at
the specific time instant i; the limits to the accelerations
are defined by vector Amax. θi = [θa,i,θm,i] is the an-
gular positions of the chaser and θ̇i = [θ̇a,i, θ̇m,i] are
the angular speeds of the chaser. They are subjected re-
spectively to path bounds L1,L2. θ0, θ̇0 and θT , θ̇T are
the constraints on the initial and final configuration state
of the system respectively. Vector αi stores angular ac-
celerations of the base-spacecraft for the specific instant
i, whose limits are defined in the bound vector αmax.
Function f(α) expresses the mapping between the base-
spacecraft angular accelerations and double derivatives of
Euler angles θ̈a,i = (θ̈1,i, θ̈2,i, θ̈3,i) Finally, parameter T
indicates the duration of the maneuver, it is divided into
N intervals of i length. The dynamics of the system is
managed by the computed torque controller described in
Equation 4. The computed torque controller is a non-
linear control technique that combines the benefits given
by the dynamic model and the stabilization of a PD con-
troller, it is based on the feedback linearization approach.
It is composed of a feedforward component to achieve
the nominal required torques and a feedback component
to minimize position and velocity tracking errors. Given
the spacecraft dynamic model and a twice-differentiable
desired trajectory, which is generated by the optimization
algorithm, this control law calculates the torque functions
for the trajectory execution. The first component of the
controller is the product between the inertia matrix of

the system M(q) (introduced in eq. (1)) and an accel-
eration term which is the sum of the feedforward accel-
eration q̈d and a feedback acceleration which stabilizes
the trajectory error to zero, generated by a PD controller:
Kp · (qd − q) +Kd · (q̇d − q̇). The feedforward plus
feedback accelerations compose the commanded accel-
eration which is turned by the inertia matrix into a joint
torque. The second component of the controller c(q, q̇) is
the feedforward term providing the torque to compensate
for nonlinearities, such as Coriolis and gravity forces.
The formula is shown in Eq. (4):

τ = M(q)

[
q̈d +Kp · (qd − q) +Kd · (q̇d − q̇)

]
+ c(q, q̇)

(4)
where the desired position qd, velocity q̇d and accelera-
tion q̈d are obtained from trajectory planning; Kp and
Kd are positive diagonal matrices; M(q) and c(q, q̇)
matrices are provided by the dynamic model of the space-
craft. It should be considered that this controller requires
actuation on the base-spacecraft, therefore the chaser can-
not be in a free-floating state; on the other hand, full ex-
ploitation of the system’s actuators allows precise trajec-
tory tracking.

4. CONTACT MODEL

The simulation results presented in this paper are for col-
lisions between the target T and the final link G of the
multibody chaser but we have also examined the colli-
sion dynamics between T and other bodies of the chaser
as well, which was examined in our work on debris colli-
sions [13]. Note, however, that one limitation of our sim-
ulation is that it does not currently prevent self-collision
between bodies of the chaser spacecraft itself. This al-
lows, for example, the overlapping between links during
planar motion. This issue of overlapping of manipula-
tor links in the planar perspective is physically realistic
because orbital manipulators often have joint offsets be-
tween their links, which facilitates compact stowing. As
a result, the links of real-world manipulators are physi-
cally designed to never come in contact with each other
and do overlap in a planar sense. Of course, the links
of manipulator could collide with the base vehicle, this
can be handled by our simulation if needed but our focus
in this work here is to investigate the effects of contact
between bodies that are external to the chaser system.

Our approach to simulating contact dynamics relies on
the concept of minimum distance points (MDPs), which
in the context of this paper is defined as a pair of points on
two bodies (i.e., one point on each body) that are closest
to each other. Keeping track of this minimum distance
between two points on two disconnected bodies allows
the determination of when a collision event occurs, this
is formally known as collision detection. The two bodies
are said to be in contact if the minimum distance between
the two points is zero, in this case, we proceed to com-
pute the contact/collision forces between the two bodies.



Indeed, if the minimum distance between the two points
is a non-zero real value, then the two bodies are not in
contact. The pair of points that make up the MDPs are
always located on the boundaries of the bodies and are
the points where a contact event/collision occurs in our
model. Knowledge of the coordinates of the MDP pair
allows us to compute the interpenetration between bod-
ies, represented by ρ (in SI units of m); this is defined as
the depth of penetration between bodies that are, in fact,
in a collision state. Interpenetration is then used to de-
termine the direction of the reaction force as well as its
magnitude.

From a mathematical perspective, we formulate this col-
lision detection part of the simulation as an inequality-
constrained convex optimization program that performs
a minimization over a continuous objective function. In
this problem, the objective function represents a scalar
metric describing the squared minimum distance between
two bodies, referred to as proximity and represented by
the symbol ϕ (SI units of m). In terms of the paragraph
immediately above, ϕ defines the minimum distance be-
tween two points (i.e., the MDPs-pair), which we now
know can be either zero or non-zero positive scalar. So,
if ϕ is zero, the bodies are in contact and the contact por-
tion of the simulation can then be performed. Figure 2
shows ϕ as the distance between points X̃ and Ỹ , these
two points are the MDPs of bodies X and Y respectively.
Note that this figure shows X and Y as cuboids with half-
lengths of their sides defined by Ci and Di (i = 1, 2, 3),
respectively. Bodies X and Y in Figure 2 are useful in
describing the collision detection problem but the reader
should also see them as analogs for bodies G and T in
Figure 1. Further, in Figure 2, we highlight two posi-

Figure 2: Geometrical description of two cuboids as de-
fined by their centroids, orthogonal basis and parameters.

tion vectors that track X̃ and Ỹ from the origin of an
external frame I; these are indicated as r̃X and r̃Y, re-
spectively. These serve as the independent variables of
our convex optimisation problem and their optimal val-
ues provide the coordinates of the MDPs-pair. In other
words, their optimal value is that which minimizes the
objective function representing the distance between X̃
and Ỹ to zero. The coordinates of each point are used to
determine the amount of interpenetration ρ, which is later
used to compute the reaction force.

Note that the optimisation problem can only be correctly
solved (i.e. minimizing ϕ for the MDPs coordinates)
when the objects do not intersect or overlap. This is due
to the fact that every pair of points within the overlapping
region are valid solutions to MDP-pair that also minimize
the objective function to zero but no longer represent the
original points where contact occurs in reality. Thus, to
correctly solve the optimisation for the case of overlap-
ping bodies, we introduce a fictitious body to compute
ρ that helps correct our simulation; this is described in
greater detail below.

We formulate a new problem that makes it possible to
calculate ρ by introducing a fictitious cuboid at the same
location as the secondary body (shown in green in Fig-
ure 2). This fictitious body has smaller set of dimensions
than the secondary body; we indicate this fictitious body
dimensions by D∗

i (i = 1, 2, 3), which is given by:

D∗
i = Di − b. (5)

where b is a positive parameter. A surrogate proximity,
ϕ∗ ≜ ∥r̃X − r̃∗Y∥2, can be computed by solving the fol-
lowing inequality constrained convex program:

minimize
r̃X, r̃∗Y

∥r̃X − r̃∗Y∥2

subject to | r̃X · x̂1 | ≤ C1,

| r̃X · x̂2 | ≤ C2,

| r̃X · x̂3 | ≤ C3,

| r̃∗Y · ŷ1 | ≤ D∗
1 ,

| r̃∗Y · ŷ2 | ≤ D∗
2 ,

| r̃∗Y · ŷ3 | ≤ D∗
3

(6)

where r̃X and r̃∗Y are the positions of the MDPs belong-
ing to the primary cuboid and the fictitious cuboid respec-
tively from the origin of the inertial reference frame. The
interpenetration between the original bodies ρ, can then
be recovered from ϕ∗ as shown below:

ρ =

{
0 for ϕ∗ > b

b− ϕ∗ for 0 < ϕ∗ ≤ b
(7)

This is sufficient to correctly detect collisions but sim-
ulating contact dynamics requires determination of the
contact normal to the surfaces, directed towards the body
and parallel to the collision force. n̂X denotes this sur-
face normal for the primary cuboid and is computed from
Eq. (8):

n̂X =
r̃Y − r̃X

∥r̃Y − r̃X∥
(8)

The collision detection work described in this section
solves for r̃X in Equation 6; we can also compute r̃Y
with its support using

r̃Y ≈
(
r̃∗Y + b

r̃∗X − r̃∗Y
∥r̃∗X − r̃∗Y∥

)
(9)

For non-zero ρ and knowledge of n̂X, we can now com-
pute the contact force at a realistic contact point. For ex-
ample, FX̃, the contact force at X̃ , can be computed from

FX̃ = (kc · ρ3) · (1− cc · ρ̇) · n̂X (10)



where kc and cc are the contact stiffness and damping
coefficient in the normal direction to the contact surface,
respectively. In this paper, the contact forces are defined
only in the normal direction to the contact surface and
contribution of the tangential component is assumed to
be negligible. This simplified elastic-plastic contact force
model [14] (also referred to as penalty-based method)
defining the interaction between colliding bodies is com-
posed of an elastic component proportional to the virtual
interpenetration ρ, and a plastic component which is re-
lated to ρ̇. Thus it is essentially a spring-damper model
and requires complete information about the materials,
geometries, and velocities of the bodies involved.

This contact force acts on a contact point but can be re-
placed by a force acting through the centre of mass, FX,
and a moment about the mass centre MX, which are
given by:

FX = FX̃

MX = rMX × FX̃,
(11)

where rMX , the position vector from the mass centre of the
primary cuboid to X̃ , is determined from

rMX = r̃X − rX (12)

A force in the opposite direction acts on the CoM of the
secondary cuboid, and the relative torque can be com-
puted accordingly based on the position vector rMY of
contact point Ỹ from center Y ∗. This is not repeated here
for sake of brevity.

5. LAGRANGE MULTIPLIERS BASED CON-
STRAINT

The detachable joint between the target and the last link
of the manipulator is modeled through the method of
LMs. This approach is based on absolute coordinates for-
mulation, which means that: the bodies involved must be
treated as independent and the dynamic model contains
sparse equations compared to that obtained by a minimal
coordinates approach. On the other hand, it is simple to
set up and is not plagued by the limitation of generating
immutable dynamic models, meaning that it is possible to
detach and reattach bodies at runtime, without the need
to derive a dynamic model from scratch for every new
system, as required instead by the minimum coordinate
formulation. The detachable joint is modeled as a hinge,
that is, as a bilateral constraint that prevents the relative
translation of the bodies but allows their relative rotation.
The last link of the manipulator belongs to a compound
system (the base-spacecraft and three other links of the
manipulator) and thus is replaced with a new, fictitious
single body, with equivalent kinematics and inertial prop-
erties. The fictitious body (referred to as “dummy link”)
is used to compute the constraints forces, which will be
then applied to the original body. Specifically, with ref-
erence to Figure 1, the constraint is established between

point P on the target and the EE point E, and the latter is
replaced by a surrogate point on the dummy link denoted
by E∗.

The Lagrange multipliers method is therefore applied to
two bodies subject to one constraint, forming a new dy-
namic system; in this section, all terms referring to such
a system are indicated with the suffix L. The positions
of both bodies are lumped into a single state vector, qL,
which has a length of 12 because every single body in 3D
space is characterized by 6 coordinates. The inertia ma-
trix of the system, indicated as ML, collects the masses
and inertia of both bodies as diagonal elements, while off-
diagonal elements are zero. Grouping all the forces of the
system in a global force vector Q̃, the equation of motion
is:

q̈L = WLQ̃ (13)

where WL is the inverse of the mass matrix. Since the
bodies are subject to a single constraint C, this is ex-
pressed as a one-element vector as a function of qL:

C(qL) =

[
1

2
(x(qL) · x(qL)− l)

]
(14)

where vector x expresses the distance between P and E∗

and l is the desired value for such distance, which is typ-
ically set to zero for a hinge constraint. Positions of cou-
pling points consistent with the constraint are those that
satisfy:

C = 0 (15)

Consistent velocities are those satisfying Eq. 16:

Ċ = 0 (16)

Similarly, consistent accelerations need to satisfy Eq. 17:

C̈ = 0 (17)

Derivatives of C are obtained by applying the chain rule:

Ċ =
∂C

∂qL
q̇L = Jq̇L (18)

where J indicates the Jacobian matrix of C with respect
to the state vector qL: J = ∂C/∂qL. Differentiating
again with respect to time gives Eq. 19:

C̈ = J̇q̇L + Jq̈L (19)

Therefore, the problem consists of solving for a con-
straint force that, added to the external force ensures that
the resulting acceleration complies with Eq. 17, which
means that the constraint force must cancel the compo-
nent of the external force pointing out of the allowed
direction of motion. It follows that the constraint force
is orthogonal to the allowed motion and therefore does
no work, in agreement with the principle of virtual work
[15], according to which constraint forces neither add nor
take away energy from the system. Substituting Eq. (13)
in (19) gives:

C̈ = J̇q̇L + JWLQ̃ (20)



The global force vector Q̃ can be partitioned in the vector
of external forces Q and vector of constraint forces Q̂ as
follows: Q̃ = Q+ Q̂. Setting to zero according to Eq.
(17) and re-arranging gives:

JWLQ̂ = −J̇q̇L − JWLQ (21)

To ensure that the constraint forces do no work, they must
comply with the following equation:

Q̂ · ẋ(qL) = 0, ∀ẋ(qL) | Jẋ(qL) = 0 (22)

and from this it follows that vector Q̂ can be expressed
as:

Q̂ = JTλ (23)

where λ is a vector with the dimension of C whose com-
ponents are known as Lagrange multipliers. By replacing
Eq. 23 in (21):

JWLJ
Tλ = −J̇q̇− JWLQ (24)

from which λ can be obtained and multiplied by JT to
give Q̂, which is then added to the vector of acting forces
before calculating the accelerations. Since the numerical
solution of the EoMs is plagued by drift, a feedback term
is required to prevent the accumulation of numerical drift;
the feedback term is usually modeled as a damped-spring
force and is incorporated directly into the constraint force
calculation as follows:

JWLJ
Tλ = −J̇q̇− JWLQ−Kλ

s C−Kλ
d Ċ (25)

where Kλ
s and Kλ

d are gains that reproduce the spring and
damping constants. By adding the feedback term, com-
pliance with the constraint is further enforced by cancel-
ing out any displacement caused by drift, thus returning
the system to a valid state. Thus, during the simulation
the relative distance of the bodies is not always main-
tained at the desired value, but there is a continuous al-
ternation of drift and error compensation, which gener-
ates an oscillating trend of such distance. Therefore the
role of appropriately compensating for the accumulation
of the integration error is relevant; specifically, for the
hinge, it is also particularly demanding because any dis-
placement that alters the original distance of the coupling
points in any direction must be compensated for. The
basic approach implemented with Eq. 25 has two draw-
backs:

• gains are weighted with C and Ċ, that is, with the
current relative distance and velocity of the contact
points; however, the adaptivity of the resulting feed-
back terms is characterized by low responsiveness
because based on the current state of the constraint
instead of the forces that were previously responsi-
ble for it.

• gains are usually assigned arbitrary constant values,
chosen through a trial-and-error approach, while
they should vary according to the current state of the
constraint to ensure better performance and mitigate
instabilities.

This can cause poor performance when the dynamics of
the system changes abruptly; in fact, undersized restoring
forces cause uncontrollable growth of constraint drift. On
the other hand, responding with strong restoring forces to
small displacements gives rise to stiff differential equa-
tions that are intractable. A solution is offered by en-
abling collision detection inside the integrated system,
i.e. between the joined bodies. This makes it possible
to use internal reaction forces to determine whether the
bodies are in contact (i.e., the constraint is satisfied) or
not (i.e., the bodies are moving away and the constraint is
about to be violated), this signal is endowed with greater
responsiveness than simply measuring the actual distance
between bodies, because the forces are responsible for the
accelerations and thus the displacements of the bodies in
the following steps. According to this approach, gains
can be defined as follows:{

Kλ
s ,K

λ
d = α1, β1 if ∥FÃ∥ > γ

Kλ
s ,K

λ
d = α2, β2 if ∥FÃ∥ ≤ γ

(26)

where FÃ is the contact force between the bodies,
αi, βi, i = (1, 2, 3) and γ are constants. A comparison
has been carried out between following scenarios:

1. CD-disabled: collision detection disabled, LMs with
constant gains

2. CD-enabled: collision detection enabled, LMs with
adaptive gains

6. RESULTS

Due to computational limitations, the time of the sim-
ulation is not to scale. It has a total duration of 7
seconds, the first 5 of which are employed for the op-
timal trajectory execution and the last 2 for the post-
coupling maneuver. The coupling operation takes place
between the two phases, in a fast and direct manner. The
system dynamics parameters are summarized in Table
1, where li, wi, di, i = (A,B,C, F,G, T ) indicate the

Table 1: Dynamics parameters

Body li wi di mi Iixx Iiyy Iizz

[m] [m] [m] [kg] [kg m2] [kg m2] [kg m2]

Base A 0.5 0.5 0.5 20 0.833 0.83 0.83
Link B 0.5 0.05 0.05 2 0.0008 0.042 0.042
Link C 0.5 0.05 0.05 2 0.0008 0.042 0.042
Link F 0.5 0.05 0.05 2 0.0008 0.042 0.042
Link G 0.1 0.05 0.05 2 0.0008 0.02 0.02
Target T 0.2 0.2 0.2 1 0.0067 0.0067 0.0067

length, width and depth of each cuboid. The kinemat-
ics boundaries for the optimal trajectory are shown in Ta-
ble 2. Here xA, yA and xE , yE are the coordinates of
the base-spacecraft CoM and the EE respectively, while
θi, i = (1, .., 7) indicate, in order, the angles of base-
spacecraft attitude and manipulator joints. Figure 3



Table 2: Initial and final kinematic boundaries

xA yA θ1 θ2 θ3 θ4 θ5 θ6 θ7 xE yE

Position ti 0 0 0 0 0 0 -π/2 -π/2 0 0.3 -1
Position tf 0 0 0 0 0 -π/6 π/10 π/3 π/4 3 0.23

Velocity ti 0 0 0 0 0 0 0 0 0 0 0
Velocity tf 0 0 0 0 0 0 0 0 0 0 0

shows the trajectory of the EE, which in the first phase
of the simulation is guided by the controller to follow the
optimal trajectory and reach the target. Standing on the
CoM of the base-spacecraft, which coincides with the ori-
gin of the cartesian plane, the actual trajectory of the EE
point, highlighted in blue, tracks the optimal one (in or-
ange) until the designated coupling point on the target is
reached (the red dot), and then it describes another por-
tion of trajectory that corresponds to the post-capture ma-
neuver, which, however, is not optimized. The detach-

Figure 3: Pre-capture and post-capture EE trajectories
seen from the base-spacecraft CoM. The optimal refer-
ence trajectory is highlighted in orange.

able hinge is formed after the coupling operation at the
fifth second and is maintained until the end of the simu-
lation. Figure 4 compares the behavior of the hinge in the
aforementioned scenarios, i.e. with collision detection
(CD)-disabled and CD-enabled, depicting the distance
between the coupling points. After an initial touch, the
points E and P are kept almost constantly at a distance
of 0.08 m despite the desired constraint distance being
set to zero. The behavior of the hinge in the two scenar-
ios begins to diverge from about 6.5 s, when a growing
constraint violation in the CD-disabled scenario causes
the joint to collapse. Thus, the CD-enabled scenario per-
forms in a more physically realistic way, nevertheless, it
requires maintaining compliance with the constraint in
the presence of contact forces between the coupling bod-
ies, which could result in the sudden generation of high
accelerations, leading to instability.

Figures 5 and 6 compare the system configurations for
both scenarios. The first phases of the simulation are
identical, while the post-coupling maneuvers differ due
to whether or not CD is enabled between the manipulator
and the target. While in the first scenario the trajectory of
target CoM is very smooth, the second shows a better re-
production of the real behavior of the spacecraft system

Figure 4: Distance between coupling points E and P in
CD-disabled and CD-enabled scenarios

during a capture operation, which, like every other on-
orbit proximity operation, is plagued by errors and im-
perfections. To put this behavior more prominently, in
this simulation the connection between the bodies for the
berthing operation is hinged rather than fixed.

Figure 5: Initial, coupling and final configurations of the
system. CD-disabled scenario.

7. CONCLUSIONS

This work investigates the interaction between a chaser
spacecraft and a target during the simulation of a berthing
maneuver. The manipulator tracks a trajectory that min-
imizes angular accelerations of the base and approaches
the stationary target with a final velocity of zero, so as not
to cause disturbance in the target pose, which by assump-
tion is not provided with self-actuation. The proposed
approach to model a detachable joint exploits the contact
forces between joined bodies; the forces are computed by
enabling collision detection even after the coupling oper-
ation has been performed. This method, verified in sim-



Figure 6: Initial, coupling and final configurations of the
system. CD-enabled scenario.

ulation, is in contrast to the standard approach which ig-
nores internal reaction forces between joined bodies. A
key contribution of this work is to demonstrate the po-
tential effectiveness of the contact method in reproduc-
ing the errors that usually occur during coupling between
bodies, making the simulation more realistic; however,
this comes at the expense of the additional computational
effort required. Further, by providing insights on how to
increase the simulation accuracy when an external body is
attached to a space manipulator, the results of this study
are expected to contribute to the design of post-capture
controllers.
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